Intensive care unit-acquired weakness (ICU-AW) is a serious complication in critically ill patients. Therefore, timely and accurate diagnosis and monitoring of ICU-AW are crucial for effectively preventing its associated morbidity and mortality. This article provides a comprehensive review of ICU-AW, focusing on the different methods used for its diagnosis and monitoring. Additionally, it highlights the role of bedside ultrasound in muscle assessment and early detection of ICU-AW. Furthermore, the article explores potential strategies for preventing ICU-AW. Healthcare providers who manage critically ill patients utilize diagnostic approaches such as physical exams, imaging, and assessment tools to identify ICU-AW. However, each method has its own limitations. The diagnosis of ICU-AW needs improvement due to the lack of a consensus on the appropriate approach for its detection. Nevertheless, bedside ultrasound has proven to be the most reliable and cost-effective tool for muscle assessment in the ICU. Combining the Sequential Organ Failure Assessment (SOFA) score, Acute Physiology and Chronic Health Evaluation (APACHE) II score assessment, and ultrasound can be a convenient approach for the early detection of ICU-AW. This approach can facilitate timely intervention and prevent catastrophic consequences. However, further studies are needed to strengthen the evidence.
Background Various rapid response systems have been developed to detect clinical deterioration in patients. Few studies have evaluated single-parameter systems in children compared to scoring systems. Therefore, in this study we evaluated a single-parameter system called the acute response system (ARS).
Methods This retrospective study was performed at a tertiary children’s hospital. Patients under 18 years old admitted from January 2012 to August 2023 were enrolled. ARS parameters such as systolic blood pressure, heart rate, respiratory rate, oxygen saturation, and whether the ARS was activated were collected. We divided patients into two groups according to activation status and then compared the occurrence of critical events (cardiopulmonary resuscitation or unexpected intensive care unit admission). We evaluated the ability of ARS to predict critical events and calculated compliance. We also analyzed the correlation between each parameter that activates ARS and critical events.
Results The critical events prediction performance of ARS has a specificity of 98.5%, a sensitivity of 24.0%, a negative predictive value of 99.6%, and a positive predictive value of 8.1%. The compliance rate was 15.6%. Statistically significant increases in the risk of critical events were observed for all abnormal criteria except low heart rate. There was no significant difference in the incidence of critical events.
Conclusions ARS, a single parameter system, had good specificity and negative predictive value for predicting critical events; however, sensitivity and positive predictive value were not good, and medical staff compliance was poor.
Background Delirium occurs at high rates among patients in intensive care units and increases the risk of morbidity and mortality. The purpose of this study was to investigate the effects of environmental interventions on delirium.
Methods This prospective cohort study enrolled 192 patients admitted to the surgical intensive care unit (SICU) during the pre-intervention (June 2013 to October 2013) and post-intervention (June 2014 to October 2014) periods. Environmental interventions involved a cognitive assessment, an orientation, and a comfortable environment including proper sleep conditions. The primary outcomes were the prevalence, duration, and onset of delirium.
Results There were no statistically significant differences in incidence rate, time of delirium onset, general characteristics, and mortality between the pre-intervention and post-intervention groups. The durations of delirium were 14.4±19.1 and 7.7±7.3 days in the pre-intervention and post-intervention groups, respectively, a significant reduction (P=0.027). The lengths of SICU stay were 20.0±22.9 and 12.6±8.7 days for the pre-intervention and post-intervention groups, respectively, also a significant reduction (P=0.030).
Conclusions The implementation of an environmental intervention program reduced the duration of delirium and length of stay in the SICU for critically ill surgical patients.
Background The use of biomarkers to predict patient outcomes may be crucial for patients admitted to the intensive care unit (ICU) following surgery because biomarkers guide clinicians in tailoring treatment plans accordingly. Therefore, we aimed to identify potential biomarkers to predict the prognosis of patients with Fournier’s gangrene (FG) admitted to the ICU after surgery.
Methods We enrolled patients with FG admitted to our Hospital between January 2013 and December 2022. We retrospectively analyzed patient characteristics, factors related to management, scores known to be associated with the prognosis of FG, and laboratory data.
Results The study population included 28 survivors and 13 nonsurvivors. The initial serum lactate level taken in the emergency department; white blood cell, neutrophil, and platelet counts; delta neutrophil index and international normalized ratio; albumin, glucose, HCO3, and postoperative lactate levels; and the laboratory risk indicator for necrotizing fasciitis differed between survivors and nonsurvivors. Postoperative lactate and initial albumin levels were independent predictors of mortality in patients with FG. In the receiver operating characteristic curve analysis, the postoperative lactate level was the best indicator of mortality (area under the curve, 0.877; 95% confidence interval, 0.711–1.000). The optimal cutoff postoperative lactate level for predicting mortality was 3.0 mmol/L (sensitivity, 80.0%; specificity, 95.0%).
Conclusions Postoperative lactate and initial albumin levels could be potential predictors of mortality in patients with FG admitted to the ICU after surgery, and the optimal cutoff postoperative lactate and initial albumin levels to predict mortality were 3.0 mmol/L and 3.05 g/dl, respectively. Large-scale multicenter prospective studies are required to confirm our results.
Yong Hoon Lee, Jaehee Lee, Byunghyuk Yu, Won Kee Lee, Sun Ha Choi, Ji Eun Park, Hyewon Seo, Seung Soo Yoo, Shin Yup Lee, Seung-Ick Cha, Chang Ho Kim, Jae Yong Park
Acute Crit Care. 2023;38(4):442-451. Published online November 21, 2023
Background Stenotrophomonas maltophilia has been increasingly recognized as an opportunistic pathogen associated with high morbidity and mortality. Data on the prognostic factors associated with S. maltophilia pneumonia in patients admitted to intensive care unit (ICU) are lacking.
Methods We conducted a retrospective analysis of data from 117 patients with S. maltophilia pneumonia admitted to the ICUs of two tertiary referral hospitals in South Korea between January 2011 and December 2022. To assess risk factors associated with in-hospital mortality, multivariable logistic regression analyses were performed.
Results The median age of the study population was 71 years. Ventilator-associated pneumonia was 76.1% of cases, and the median length of ICU stay before the first isolation of S. maltophilia was 15 days. The overall in-hospital mortality rate was 82.1%, and factors independently associated with mortality were age (odds ratio [OR], 1.05; 95% confidence interval [CI], 1.00–1.09; P=0.046), Sequential Organ Failure Assessment (SOFA) score (OR, 1.21; 95%; CI, 1.02–1.43; P=0.025), corticosteroid use (OR, 4.19; 95% CI, 1.26–13.91; P=0.019), and polymicrobial infection (OR, 95% CI 0.07–0.69). However, the impact of appropriate antibiotic therapy on mortality was insignificant. In a subgroup of patients who received appropriate antibiotic therapy (n=58), antibiotic treatment modality-related variables, including combination or empirical therapy, also showed no significant association with survival.
Conclusions Patients with S. maltophilia pneumonia in ICU have high mortality rates. Older age, higher SOFA score, and corticosteroid use were independently associated with increased in-hospital mortality, whereas polymicrobial infection was associated with lower mortality. The effect of appropriate antibiotic therapy on prognosis was insignificant.
Jesse A. Johnson, Kashka F. Mallari, Vincent M. Pepe, Taylor Treacy, Gregory McDonough, Phue Khaing, Christopher McGrath, Brandon J. George, Erika J. Yoo
Acute Crit Care. 2023;38(3):298-307. Published online August 23, 2023
Background There is increasing heterogeneity in the clinical phenotype of patients admitted to the intensive care unit (ICU) with coronavirus disease 2019 (COVID-19,) and reasons for mechanical ventilation are not limited to COVID pneumonia. We aimed to compare the characteristics and outcomes of intubated patients admitted to the ICU with the primary diagnosis of acute hypoxemic respiratory failure (AHRF) from COVID-19 pneumonia to those patients admitted for an alternative diagnosis.
Methods Retrospective cohort study of adults with confirmed SARS-CoV-2 infection admitted to nine ICUs between March 18, 2020, and April 30, 2021, at an urban university institution. We compared characteristics between the two groups using appropriate statistics. We performed logistic regression to identify risk factors for death in the mechanically ventilated COVID-19 population.
Results After exclusions, the final sample consisted of 319 patients with respiratory failure secondary to COVID pneumonia and 150 patients intubated for alternative diagnoses. The former group had higher ICU and hospital mortality rates (57.7% vs. 36.7%, P<0.001 and 58.9% vs. 39.3%, P<0.001, respectively). Patients with AHRF secondary to COVID-19 pneumonia also had longer ICU and hospital lengths-of-stay (12 vs. 6 days, P<0.001 and 20 vs. 13.5 days, P=0.001). After risk-adjustment, these patients had 2.25 times higher odds of death (95% confidence interval, 1.42–3.56; P=0.001).
Conclusions Mechanically ventilated COVID-19 patients admitted to the ICU with COVID-19-associated respiratory failure are at higher risk of hospital death and have worse ICU utilization outcomes than those whose reason for admission is unrelated to COVID pneumonia.
Background
In this study, we explored whether awake prone position (PP) can impact prognosis of severe hypoxemia coronavirus disease 2019 (COVID-19) patients.
Methods This was a prospective observational study of severe, critically ill adult COVID-19 patients admitted to the intensive care unit. Patients were divided into two groups: group G1, patients who benefited from a vigilant and effective PP (>4 hours minimum/24) and group G2, control group. We compared demographic, clinical, paraclinical and evolutionary data.
Results Three hundred forty-nine patients were hospitalized during the study period, 273 met the inclusion criteria. PP was performed in 192 patients (70.3%). The two groups were comparable in terms of demographic characteristics, clinical severity and modalities of oxygenation at intensive care unit (ICU) admission. The mean PaO2/ FIO2 ratios were 141 and 128 mm Hg, respectively (P=0.07). The computed tomography scan was comparable with a critical >75% in 48.5% (G1) versus 54.2% (G2). The median duration of the daily PP session was 13±7 hours per day. The average duration of spontaneous PP days was 7 days (4–19). Use of invasive ventilation was lower in the G1 group (27% vs. 56%, P=0.002). Healthcare-associated infections were significantly lower in G1 (42.1% vs. 82%, P=0.01). Duration of total mechanical ventilation and length of ICU stay were comparable between the two groups. Mortality was significantly higher in G2 (64% vs. 28%, P=0.02).
Conclusions Our study confirmed that awake PP can improve prognosis in COVID-19 patients. Randomized controlled trials are needed to confirm this result.
Louis Boutin, Louis Morisson, Florence Riché, Romain Barthélémy, Alexandre Mebazaa, Philippe Soyer, Benoit Gallix, Anthony Dohan, Benjamin G Chousterman
Acute Crit Care. 2023;38(3):343-352. Published online August 21, 2023
Background Sepsis is a severe and common cause of admission to the intensive care unit (ICU). Radiomic analysis (RA) may predict organ failure and patient outcomes. The objective of this study was to assess a model of RA and to evaluate its performance in predicting in-ICU mortality and acute kidney injury (AKI) during abdominal sepsis.
Methods This single-center, retrospective study included patients admitted to the ICU for abdominal sepsis. To predict in-ICU mortality or AKI, elastic net regularized logistic regression and the random forest algorithm were used in a five-fold cross-validation set repeated 10 times.
Results Fifty-five patients were included. In-ICU mortality was 25.5%, and 76.4% of patients developed AKI. To predict in-ICU mortality, elastic net and random forest models, respectively, achieved areas under the curve (AUCs) of 0.48 (95% confidence interval [CI], 0.43–0.54) and 0.51 (95% CI, 0.46–0.57) and were not improved combined with Simplified Acute Physiology Score (SAPS) II. To predict AKI with RA, the AUC was 0.71 (95% CI, 0.66–0.77) for elastic net and 0.69 (95% CI, 0.64–0.74) for random forest, and these were improved combined with SAPS II, respectively; AUC of 0.94 (95% CI, 0.91–0.96) and 0.75 (95% CI, 0.70–0.80) for elastic net and random forest, respectively.
Conclusions This study suggests that RA has poor predictive performance for in-ICU mortality but good predictive performance for AKI in patients with abdominal sepsis. A secondary validation cohort is needed to confirm these results and the assessed model.
Background
As sleep disturbances are common in the intensive care unit (ICU), this study assessed the sleep quality in the ICU and identified barriers to sleep.
Methods Patients admitted to the ICUs of a tertiary hospital between June 2022 and December 2022 who were not mechanically ventilated at enrollment were included. The quality of sleep (QoS) at home was assessed on a visual analog scale as part of an eight-item survey, while the QoS in the ICU was evaluated using the Korean version of the Richards-Campbell Sleep Questionnaire (K-RCSQ). Good QoS was defined by a score of ≥50.
Results Of the 30 patients in the study, 19 reported a QoS score <50. The Spearman correlation coefficient showed no meaningful relationship between the QoS at home and the overall K-RCSQ QoS score in the ICU (r=0.16, P=0.40). The most common barriers to sleep were physical discomfort (43%), being awoken for procedures (43%), and feeling unwell (37%); environmental factors including noise (30%) and light (13%) were also identified sources of sleep disruption. Physical discomfort (median [interquartile range]: 32 [28.0–38.0] vs. 69 [42.0–80.0], P=0.004), being awoken for procedures (36 [20.0–48.0] vs. 54 [36.0–80.0], P=0.04), and feeling unwell (31 [18.0–42.0] vs. 54 [40.0–76.0], P=0.01) were associated with lower K-RCSQ scores.
Conclusions In the ICU, physical discomfort, patient care interactions, and feeling unwell were identified as barriers to sleep.
Mobilization in traumatic brain injury (TBI) have shown the improvement of length of stay, infection, long term weakness, and disability. Primary damage as a result of trauma’s direct effect (skull fracture, hematoma, contusion, laceration, and nerve damage) and secondary damage caused by trauma’s indirect effect (microvasculature damage and pro-inflammatory cytokine) result in reduced tissue perfusion & edema. These can be facilitated through mobilization, but several precautions must be recognized as mobilization itself may further deteriorate patient’s condition. Very few studies have discussed in detail regarding mobilizing patients in TBI cases. Therefore, the scope of this review covers the detail of physiological effects, guideline, precautions, and technique of mobilization in patients with TBI.
Background In patients with severe trauma, the diagnosis of acute kidney injury (AKI) is important because it is a predictive factor for poor prognosis and can affect patient care. The diagnosis and staging of AKI are based on change in serum creatinine (SCr) levels from baseline. However, baseline creatinine levels in patients with traumatic injuries are often unknown, making the diagnosis of AKI in trauma patients difficult. This study aimed to enhance the accuracy of AKI diagnosis in trauma patients by presenting an appropriate reference creatinine estimate (RCE). Methods: We reviewed adult patients with severe trauma requiring intensive care unit admission between 2015 and 2019 (n=3,228) at a single regional trauma center in South Korea. AKI was diagnosed based on the current guideline published by the Kidney Disease: Improving Global Outcomes organization. AKI was determined using the following RCEs: estimated SCr75-modification of diet in renal disease (MDRD), trauma MDRD (TMDRD), admission creatinine level, and first-day creatinine nadir. We assessed inclusivity, prognostic ability, and incrementality using the different RCEs. Results: The incidence of AKI varied from 15% to 46% according to the RCE used. The receiver operating characteristic curve of TMDRD used to predict mortality and the need for renal replacement therapy (RRT) had the highest value and was statistically significant (0.797, P<0.001; 0.890, P=0.002, respectively). In addition, the use of TMDRD resulted in a mortality prognostic ability and the need for RRT was incremental with AKI stage. Conclusions: In this study, TMDRD was feasible as a RCE, resulting in optimal post-traumatic AKI diagnosis and prognosis.
Providing critical nursing care for conscious mechanically ventilated patients is mediated via effective communication. This study aimed to identify and map the antecedents, attributes, consequences, and definition of nurse–conscious mechanically ventilated patient communication (N-CMVPC). This scoping review was conducted by searching the Cochrane Library and the CINAHL, EMBASE, PubMed, Web of Science, and Scopus databases, between 2001 and 2021. The keywords queried included "nurses," "mechanically ventilated patients," "mechanical ventilation," "intubated patients," "communication," "interaction," "relationships," "nurse–patient communication," "nurse–patient relations," "intensive care units," and "critical care." Studies related to communication with healthcare personnel or family members were excluded. The results indicated that N-CMVPC manifests as a set of attributes in communication experiences, emotions, methods, and behaviors of the nurse and the patient and is classified into three main themes, nurse communication, patient communication, and quantitative-qualitative aspects. N-CMVPC is a complex, multidimensional, and multi-factor concept. It is often nurse-controlled and can express itself as questions, sentences, or commands in the context of experiences, feelings, and positive or negative behaviors involving the nurse and the patient.
Citations
Citations to this article as recorded by
A Study on Nurses' Communication Experiences with Intubation Patients Ye Rim Kim, Hye Ree Park, Mee Kyung Shin The Korean Journal of Rehabilitation Nursing.2023; 26(1): 28. CrossRef
Background Hospital-acquired infections (HAIs) are increasing due to the spread of multi-drugresistant organisms. Gut dysbiosis in an intensive care unit (ICU) patients at admission showed an altered abundance of some bacterial genera associated with the occurrence of HAIs and mortality. In the present study, we investigated the pattern of the gut microbiome in ICU patients at admission to correlate it with the development of HAIs during ICU stay. Methods: Twenty patients admitted to an ICU with a cross-matched control group of 30 healthy subjects of matched age and sex. Quantitative SYBR green real-time polymerase chain reaction was done for the identification and quantitation of selected bacteria. Results: Out of those twenty patients, 35% developed ventilator-associated pneumonia during their ICU stay. Gut microbiome analysis showed a significant decrease in Firmicutes and Firmicutes to Bacteroidetes ratio in ICU patients in comparison to the control and in patients who developed HAIs in comparison to the control group and patients who did not develop HAIs. There was a statistically significant increase in Bacteroides in comparison to the control group. There was a statistically significant decrease in Bifidobacterium and Faecalibacterium prausnitzii and an increase in Lactobacilli in comparison to the control group with a negative correlation between Acute Physiology and Chronic Health Evaluation (APACHE) II score and Firmicutes to Bacteroidetes and Prevotella to Bacteroides ratios. Conclusions: Gut dysbiosis of patients at the time of admission highlights the importance of identification of the microbiome of patients admitted to the ICU as a target for preventing of HAIs
Citations
Citations to this article as recorded by
Antimicrobial Peptides and Their Assemblies Ana Maria Carmona-Ribeiro Future Pharmacology.2023; 3(4): 763. CrossRef
Background Predicting the length of stay (LOS) for coronavirus disease 2019 (COVID-19) patients in the intensive care unit (ICU) is essential for efficient use of ICU resources. We analyzed the clinical characteristics of patients with severe COVID-19 based on their clinical care and determined the predictive factors associated with prolonged LOS. Methods: We included 96 COVID-19 patients who received oxygen therapy at a high-flow nasal cannula level or above after ICU admission during March 2021 to February 2022. The demographic characteristics at the time of ICU admission and results of severity analysis (Sequential Organ Failure Assessment [SOFA], Acute Physiology and Chronic Health Evaluation [APACHE] II), blood tests, and ICU treatments were analyzed using a logistic regression model. Additionally, blood tests (C-reactive protein, D-dimer, and the PaO2 to FiO2 ratio [P/F ratio]) were performed on days 3 and 5 of ICU admission to identify factors associated with prolonged LOS. Results: Univariable analyses showed statistically significant results for SOFA score at the time of ICU admission, C-reactive protein level, high-dose steroids, mechanical ventilation (MV) care, continuous renal replacement therapy, extracorporeal membrane oxygenation, and prone position. Multivariable analysis showed that MV care and P/F ratio on hospital day 5 were independent factors for prolonged ICU LOS. For D-dimer, no significant variation was observed at admission; however, after days 3 and 5 days of admission, significant between-group variation was detected. Conclusions: MV care and P/F ratio on hospital day 5 are independent factors that can predict prolonged LOS for COVID-19 patients.
Citations
Citations to this article as recorded by
Predictors of prolonged ventilator weaning and mortality in critically ill patients with COVID-19 Marcella M Musumeci, Bruno Valle Pinheiro2, Luciana Dias Chiavegato1, Danielle Silva Almeida Phillip1, Flavia R Machado3, Fabrício Freires3, Osvaldo Shigueomi Beppu1, Jaquelina Sonoe Ota Arakaki1, Roberta Pulcheri Ramos1 Jornal Brasileiro de Pneumologia.2023; : e20230131. CrossRef
The distorted memories of patients treated in the intensive care unit during the COVID-19 pandemic: A qualitative study Gisela Vogel, Ulla Forinder, Anna Sandgren, Christer Svensen, Eva Joelsson-Alm Intensive and Critical Care Nursing.2023; 79: 103522. CrossRef
Background We assessed predictors of mortality in the intensive care unit (ICU) and investigated if Glasgow coma scale (GCS) is associated with mortality in patients undergoing endotracheal intubation (EI). Methods: From February 2020, we performed a 1-year study on 2,055 adult patients admitted to the ICU of two teaching hospitals. The outcome was mortality during ICU stay and the predictors were patients’ demographic, clinical, and laboratory features. Results: EI was associated with a decreased risk for mortality compared with similar patients (adjusted odds ratio [AOR], 0.32; P=0.030). This shows that EI had been performed correctly with proper indications. Increasing age (AOR, 1.04; P<0.001) or blood pressure (AOR, 1.01; P<0.001), respiratory problems (AOR, 3.24; P<0.001), nosocomial infection (AOR, 1.64; P=0.014), diabetes (AOR, 5.69; P<0.001), history of myocardial infarction (AOR, 2.52; P<0.001), chronic obstructive pulmonary disease (AOR, 3.93; P<0.001), immunosuppression (AOR, 3.15; P<0.001), and the use of anesthetics/sedatives/hypnotics for reasons other than EI (AOR, 4.60; P<0.001) were directly; and GCS (AOR, 0.84; P<0.001) was inversely related to mortality. In patients with trauma surgeries (AOR, 0.62; P=0.014) or other surgical categories (AOR, 0.61; P=0.024) undergoing EI, GCS had an inverse relation with mortality (accuracy=82.6%, area under the receiver operator characteristic curve=0.81). Conclusions: A variety of features affected the risk for mortality in patients admitted to the ICU. Considering GCS score for EI had the potential of affecting prognosis in subgroups of patients such as those with trauma surgeries or other surgical categories.