Background Successful liberation from mechanical ventilation is one of the most crucial processes in critical care because it is the first step by which a respiratory failure patient begins to transition out of the intensive care unit and return to their own life. Therefore, when devising appropriate strategies for removing mechanical ventilation, it is essential to consider not only the individual experiences of healthcare professionals, but also scientific and systematic approaches. Recently, numerous studies have investigated methods and tools for identifying when mechanically ventilated patients are ready to breathe on their own. The Korean Society of Critical Care Medicine therefore provides these recommendations to clinicians about liberation from the ventilator. Methods: Meta-analyses and comprehensive syntheses were used to thoroughly review, compile, and summarize the complete body of relevant evidence. All studies were meticulously assessed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) method, and the outcomes were presented succinctly as evidence profiles. Those evidence syntheses were discussed by a multidisciplinary committee of experts in mechanical ventilation, who then developed and approved recommendations. Results: Recommendations for nine PICO (population, intervention, comparator, and outcome) questions about ventilator liberation are presented in this document. This guideline includes seven conditional recommendations, one expert consensus recommendation, and one conditional deferred recommendation. Conclusions: We developed these clinical guidelines for mechanical ventilation liberation to provide meaningful recommendations. These guidelines reflect the best treatment for patients seeking liberation from mechanical ventilation.
This comprehensive review explores the broad landscape of brain–computer interface (BCI) technology and its potential use in intensive care units (ICUs), particularly for patients with motor impairments such as quadriplegia or severe brain injury. By employing brain signals from various sensing techniques, BCIs offer enhanced communication and motor rehabilitation strategies for patients. This review underscores the concept and efficacy of noninvasive, electroencephalogram-based BCIs in facilitating both communicative interactions and motor function recovery. Additionally, it highlights the current research gap in intuitive “stop” mechanisms within motor rehabilitation protocols, emphasizing the need for advancements that prioritize patient safety and individualized responsiveness. Furthermore, it advocates for more focused research that considers the unique requirements of ICU environments to address the challenges arising from patient variability, fatigue, and limited applicability of current BCI systems outside of experimental settings.
Background This meta-analysis aims to evaluate the effects of ketamine in critically ill intensive care unit (ICU) patients.
Methods We searched for randomized controlled trials (RCTs) in PubMed, Scopus, and the Cochrane Library; the search was performed initially in January but was repeated in December of 2023. We focused on ICU patients of any age. We included studies that compared ketamine with other traditional agents used in the ICU. We synthesized evidence using RevMan v5.4 and presented the results as forest plots. We also used trial sequential analysis (TSA) software v. 0.9.5.10 Beta and presented results as TSA plots. For synthesizing results, we used a random-effects model and reported differences in outcomes of two groups in terms of mean difference (MD), standardized MD, and risk ratio with 95% confidence interval. We assessed the risk of bias using the Cochrane RoB tool for RCTs. Our outcomes were mortality, pain, opioid and midazolam requirements, delirium rates, and ICU length of stay.
Results Twelve RCTs involving 805 ICU patients (ketamine group, n=398; control group, n=407) were included in the meta-analysis. The ketamine group was not superior to the control group in terms of mortality (in five studies with 318 patients), pain (two studies with 129 patients), mean and cumulative opioid consumption (six studies with 494 patients), midazolam consumption (six studies with 304 patients), and ICU length of stay (three studies with 270 patients). However, the model favored the ketamine group over the control group in delirium rate (four studies with 358 patients). This result is significant in terms of conventional boundaries (alpha=5%) but is not robust in sequential analysis. The applicability of the findings is limited by the small number of patients pooled for each outcome.
Conclusions Our meta-analysis did not demonstrate differences between ketamine and control groups regarding any outcome except delirium rate, where the model favored the ketamine group over the control group. However, this result is not robust as sensitivity analysis and trial sequential analysis suggest that more RCTs should be conducted in the future.
Citations
Citations to this article as recorded by
Ketamine sedation in critically ill patients: Past, present and future Sameer Sharif, Jay Prakash, Bram Rochwerg Indian Journal of Anaesthesia.2024; 68(8): 674. CrossRef
Opioid-Free Using Ketamine versus Opioid-Sparing Anesthesia during the Intraoperative Period in Video-Assisted Thoracoscopic Surgery: A Randomized Controlled Trial Hoon Choi, Jaewon Huh, Minju Kim, Seok Whan Moon, Kyung Soo Kim, Wonjung Hwang Journal of Personalized Medicine.2024; 14(8): 881. CrossRef
Miguel Ángel Martínez-Camacho, Robert Alexander Jones-Baro, Alberto Gómez-González, Dalia Sahian Lugo-García, Pía Carolina Gallardo Astorga, Andrea Melo-Villalobos, Bárbara Kassandra Gonzalez-Rodriguez, Ángel Augusto Pérez-Calatayud
Acute Crit Care. 2024;39(1):47-60. Published online February 2, 2024
During the coronavirus disease 2019 (COVID-19) pandemic, clinical staff learned how to manage patients enduring extended stays in an intensive care unit (ICU). COVID-19 patients requiring critical care in an ICU face a high risk of experiencing prolonged intensive care (PIC). The use of invasive mechanical ventilation in individuals with severe acute respiratory distress syndrome can cause numerous complications that influence both short-term and long-term morbidity and mortality. Those risks underscore the importance of proactively addressing functional complications. Mitigating secondary complications unrelated to the primary pathology of admission is imperative in minimizing the risk of PIC. Therefore, incorporating strategies to do that into daily ICU practice for both COVID-19 patients and those critically ill from other conditions is significantly important.
Background Although preoxygenation is an essential procedure for safe endotracheal intubation, in some cases securing sufficient time for tracheal intubation may not be possible. Patients with head and neck cancer might have a difficult airway and need a longer time for endotracheal intubation. We hypothesized that the extended apneic period with preoxygenation via a high-flow nasal cannula (HFNC) is beneficial to patients who undergo head and neck surgery compared with preoxygenation with a simple mask. Methods: The study was conducted as a single-center, single-blinded, prospective, randomized controlled trial. Patients were divided into groups based on one of the two preoxygenation methods: HFNC group or simple facemask (mask group). Preoxygenation was performed for 5 minutes with each method, and endotracheal intubation for all patients was performed using a video laryngoscope. Oxygen partial pressures of the arterial blood were compared at the predefined time points. Results: For the primary outcome, the mean arterial oxygen partial pressure (PaO2 ) immediately after intubation was 454.2 mm Hg (95% confidence interval [CI], 416.9–491.5 mm Hg) in the HFNC group and 370.7 mm Hg (95% CI, 333.7–407.4 mm Hg) in the mask group (P=0.002). The peak PaO2 at 5 minutes after preoxygenation was not statistically different between the groups (P=0.355). Conclusions: Preoxygenation with a HFNC extending to the apneic period before endotracheal intubation may be beneficial in patients with head and neck cancer.
Background Extracorporeal blood-purification techniques are frequently needed in the pediatric intensive care unit (PICU), yet data on their clinical application are lacking. This study aims to review the indications, rate of application, clinical characteristics, complications, and outcomes of patients undergoing extracorporeal blood purification (i.e., by continuous renal replacement therapy [CRRT] or therapeutic plasma exchange [TPE]) in our PICU, including before the coronavirus disease 2019 (COVID-19) pandemic in 2019 and during the pandemic from 2020 to 2022. Methods: This study included children admitted for extracorporeal blood-purification therapy in the PICU. The indications for TPE were analyzed and compared to the American Society for Apheresis categories. Results: In 82 children, 380 TPE sessions and 37 CRRT sessions were carried out children, with 65 patients (79%) receiving TPE, 17 (20.7%) receiving CRRT, and four (4.8%) receiving both therapies. The most common indications for TPE were neurological diseases (39/82, 47.5%), followed by hematological diseases (18/82, 21.9%). CRRT was mainly performed for patients suffering from acute kidney injury. Patients with neurological diseases received the greatest number of TPE sessions (295, 77.6%). Also, the year 2022 contained the greatest number of patients receiving extracorporeal blood-purification therapy (either CRRT or TPE). Conclusions: The use of extracorporeal blood-purification techniques increased from 2019 through 2022 due to mainly autoimmune dysregulation among affected patients. TPE can be safely used in an experienced PICU. No serious adverse events were observed in the patients that received TPE, and overall survival over the 4 years was 86.5%.
Background Muscle weakness is prevalent in intensive care patients. This study focused on comparing the effects of massage and range of motion (ROM) exercises on muscle strength and intensive care unit-acquired weakness (ICU-AW) among patients with coronavirus disease 2019 (COVID-19). Methods: This study was a randomized clinical trial that recruited patients (n=45) with COVID-19 admitted to the ICU and divided them into three groups (ROM exercises, massage, and control). We evaluated muscle strength and ICU-AW in the arms and legs using a hand dynamometer. The Medical Research Council sum score was determined before and after the intervention. Results: The study findings were that 0%, 20%, and 100% of the participants in the ROM exercises, massage, and control groups had ICU-AW on the 7th day of ICU admission. The ROM exercise group had greater muscle strength in the hands and legs than the massage and control groups, and the massage group had greater muscle strength than the control group. Conclusions: Massage and ROM exercises could improve muscle strength and reduce ICU-AW in COVID-19 patients admitted to the ICU.
Jae Kyeom Sim, Sang-Min Lee, Hyung Koo Kang, Kyung Chan Kim, Young Sam Kim, Yun Seong Kim, Won-Yeon Lee, Sunghoon Park, So Young Park, Ju-Hee Park, Yun Su Sim, Kwangha Lee, Yeon Joo Lee, Jin Hwa Lee, Heung Bum Lee, Chae-Man Lim, Won-Il Choi, Ji Young Hong, Won Jun Song, Gee Young Suh
Acute Crit Care. 2024;39(1):91-99. Published online January 26, 2024
Background Mechanical power (MP) has been reported to be associated with clinical outcomes. Because the original MP equation is derived from paralyzed patients under volume-controlled ventilation, its application in practice could be limited in patients receiving pressure-controlled ventilation (PCV). Recently, a simplified equation for patients under PCV was developed. We investigated the association between MP and intensive care unit (ICU) mortality. Methods: We conducted a retrospective analysis of Korean data from the Fourth International Study of Mechanical Ventilation. We extracted data of patients under PCV on day 1 and calculated MP using the following simplified equation: MPPCV = 0.098 ∙ respiratory rate ∙ tidal volume ∙ (ΔPinsp + positive end-expiratory pressure), where ΔPinsp is the change in airway pressure during inspiration. Patients were divided into survivors and non-survivors and then compared. Multivariable logistic regression was performed to determine association between MPPCV and ICU mortality. The interaction of MPPCV and use of neuromuscular blocking agent (NMBA) was also analyzed. Results: A total of 125 patients was eligible for final analysis, of whom 38 died in the ICU. MPPCV was higher in non-survivors (17.6 vs. 26.3 J/min, P<0.001). In logistic regression analysis, only MPPCV was significantly associated with ICU mortality (odds ratio, 1.090; 95% confidence interval, 1.029–1.155; P=0.003). There was no significant effect of the interaction between MPPCV and use of NMBA on ICU mortality (P=0.579). Conclusions: MPPCV is associated with ICU mortality in patients mechanically ventilated with PCV mode, regardless of NMBA use.
Citations
Citations to this article as recorded by
Perioperative Ventilation in Neurosurgical Patients: Considerations and Challenges Ida Giorgia Iavarone, Patricia R.M. Rocco, Pedro Leme Silva, Shaurya Taran, Sarah Wahlster, Marcus J. Schultz, Nicolo’ Antonino Patroniti, Chiara Robba Current Anesthesiology Reports.2024;[Epub] CrossRef
Background New variants of the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic continue to emerge. However, little is known about the effect of these variants on clinical outcomes. This study evaluated the risk factors for poor pulmonary lung function test (PFT). Methods: The study retrospectively analyzed 87 patients in a single hospital and followed up by performing PFTs at an outpatient clinic from January 2020 to December 2021. COVID-19 variants were categorized as either a non-delta variant (November 13, 2020–July 6, 2021) or the delta variant (July 7, 2021–January 29, 2022). Results: The median age of the patients was 62 years, and 56 patients (64.4%) were male. Mechanical ventilation (MV) was provided for 52 patients, and 36 (41.4%) had restrictive lung defects. Forced vital capacity (FVC) and diffusion capacity of the lung for carbon monoxide (DLCO ) were lower in patients on MV. Male sex (odds ratio [OR], 0.228) and MV (OR, 4.663) were significant factors for decreased DLCO . The duration of MV was associated with decreased FVC and DLCO . However, the type of variant did not affect the decrease in FVC (P=0.750) and DLCO (P=0.639). Conclusions: Among critically ill COVID-19 patients, 40% had restrictive patterns with decreased DLCO . The reduction of PFT was associated with MV, type of variants.
Background In this study, we reviewed the outcomes of pediatric patients with malignancies who underwent hematopoietic stem cell transplantation (HSCT) and extracorporeal membrane oxygenation (ECMO). Methods: We retrospectively analyzed the records of pediatric hemato-oncology patients treated with chemotherapy or HSCT and who received ECMO in the pediatric intensive care unit (PICU) at Seoul National University Children’s Hospital from January 2012 to December 2020. Results: Over a 9-year period, 21 patients (14 males and 7 females) received ECMO at a single pediatric institute; 10 patients (48%) received veno-arterial (VA) ECMO for septic shock (n=5), acute respiratory distress syndrome (ARDS) (n=3), stress-induced myopathy (n=1), or hepatopulmonary syndrome (n=1); and 11 patients (52%) received veno-venous (VV) ECMO for ARDS due to pneumocystis pneumonia (n=1), air leak (n=3), influenza (n=1), pulmonary hemorrhage (n=1), or unknown etiology (n=5). All patients received chemotherapy; 9 received anthracycline drugs and 14 (67%) underwent HSCT. Thirteen patients (62%) were diagnosed with malignancies and 8 (38%) were diagnosed with non-malignant disease. Among the 21 patients, 6 (29%) survived ECMO in the PICU and 5 (24%) survived to hospital discharge. Among patients treated for septic shock, 3 of 5 patients (60%) who underwent ECMO and 5 of 10 patients (50%) who underwent VA ECMO survived. However, all the patients who underwent VA ECMO or VV ECMO for ARDS died. Conclusions: ECMO is a feasible treatment option for respiratory or heart failure in pediatric patients receiving chemotherapy or undergoing HSCT.
Background Point of care ultrasound (POCUS) is being explored for dynamic measurements like inferior vena cava collapsibility index (IVC-CI) and left ventricular outflow tract velocity time integral (LVOT-VTI) to guide anesthesiologists in predicting fluid responsiveness in the preoperative period and in treating post-induction hypotension (PIH) with varying accuracy. Methods: In this prospective, observational study on included 100 adult patients undergoing elective surgery under general anesthesia, the LVOT-VTI and IVC-CI measurements were performed in the preoperative room 15 minutes prior to surgery, and PIH was measured for 20 minutes in the post-induction period. Results: The incidence of PIH was 24%. The area under the curve, sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy of the two techniques at 95% confidence interval was 0.613, 30.4%, 93.3%, 58.3%, 81.4%, 73.6% for IVC-CI and 0.853, 83.3%, 80.3%, 57.1%, 93.8%, 77.4% for LVOT-VTI, respectively. In multivariate analysis, the cutoff value for IVC-CI was >51.5 and for LVOT-VTI it was ≤17.45 for predicting PIH with odd ratio [OR] of 8.491 (P=0.025) for IVCCI and OR of 17.427 (P<0.001) for LVOT. LVOT-VTI assessment was possible in all the patients, while 10% of patients were having poor window for IVC measurements. Conclusions: We recommend the use of POCUS using LVOT-VTI or IVC-CI to predict PIH, to decrease the morbidity of patients undergoing surgery. Out of these, we recommend LVOT-VTI measurements as it has showed a better diagnostic accuracy (77.4%) with no failure rate.
Citations
Citations to this article as recorded by
The Use of the Perfusion Index to Predict Post-Induction Hypotension in Patients Undergoing General Anesthesia: A Systematic Review and Meta-Analysis Kuo-Chuan Hung, Shu-Wei Liao, Chia-Li Kao, Yen-Ta Huang, Jheng-Yan Wu, Yao-Tsung Lin, Chien-Ming Lin, Chien-Hung Lin, I-Wen Chen Diagnostics.2024; 14(16): 1769. CrossRef
Where the Postanesthesia Care Unit and Intensive Care Unit Meet Mary Rose Gaylor, David N. Hager, Kathleen Tyson Critical Care Clinics.2024; 40(3): 523. CrossRef
Background The Controlling Nutritional Status (CONUT) score and the prognostic nutritional index (PNI) have emerged as important nutritional indices because they provide an objective assessment based on data. We aimed to investigate how these nutritional indices relate to outcomes in patients with sepsis. Methods: Data were collected retrospectively at five hospitals for patients aged ≥18 years receiving treatment for sepsis between January 1, 2017, and December 31, 2021. Serum albumin and total cholesterol concentrations, and peripheral lymphocytes were used to calculate the CONUT score and PNI. To identify predictors correlated with 30-day mortality, analyses were conducted using univariate and multivariate Cox proportional hazards models. Results: The 30-day mortality rate among 9,763 patients was 15.8% (n=1,546). The median CONUT score was 5 (interquartile range [IQR], 3–7) and the median PNI score was 39.6 (IQR, 33.846.4). Higher 30-day mortality rates were associated with individuals with moderate (CONUT score: 5–8; PNI: 35–38) or severe (CONUT: 9–12; PNI: <35) malnutrition compared with those with no malnutrition (CONUT: 0–1; PNI: >38). With CONUT scores, the hazard ratio (HR) associated with moderate malnutrition was 1.52 (95% confidence interval [CI], 1.24–1.87; P<0.001); for severe, HR=2.42 (95% CI, 1.95–3.02; P<0.001). With PNI scores, the HR for moderate malnutrition was 1.29 (95% CI, 1.09–1.53; P=0.003); for severe, HR=1.88 (95% CI, 1.67–2.12; P<0.001). Conclusions: The nutritional indices CONUT score and PNI showed significant associations with mortality of sepsis patients within 30 days.
Citations
Citations to this article as recorded by
Development and validation of a predictive model for in-hospital mortality from perioperative bacteremia in gastrointestinal surgery Yusuke Taki, Shinsuke Sato, Masaya Watanabe, Ko Ohata, Hideyuki Kanemoto, Noriyuki Oba European Journal of Clinical Microbiology & Infectious Diseases.2024;[Epub] CrossRef
Background Medical complications in peripartum patients are uncommon. Often, these patients are transferred to tertiary care centers, but their conditions and outcomes are not well understood. Our study examined peripartum patients transferred to an intensive care unit (ICU) at an academic quaternary center. Methods: We reviewed charts of adult, non-trauma, interhospital transfer (IHT) peripartum patients sent to an academic quaternary ICU between January 2017 and December 2021. We conducted a descriptive analysis and used multivariable ordinal regression to examine associations of demographic and clinical factors with ICU length of stay (LOS) and hospital length of stay (HLOS). Results: Of 1,794 IHT peripartum patients, 60 (3.2%) were directly transferred to an ICU. The average was 32 years, with a median Sequential Organ Failure Assessment (SOFA) score of 3 (1–4.25) and Acute Physiology and Chronic Health Evaluation (APACHE) II score of 8 (7–12). Respiratory failure was most common (32%), followed by postpartum hemorrhage (15%) and sepsis (14%). Intubation was required for 24 (41%), and 4 (7%) needed extracorporeal membrane oxygenation. Only 1 (1.7%) died, while 45 (76.3%) were discharged. Median ICU LOS and HLOS were 5 days (212) and 8 days (5–17). High SOFA score was linked to longer HLOS, as was APACHE II. Conclusions: Transfers of critically ill peripartum patients between hospitals were rare but involved severe medical conditions. Despite this, their outcomes were generally positive. Larger studies are needed to confirm our findings.
Background Platelet-to-Lymphocyte ratio (PLR) has been studied as a prognostic factor for various diseases and traumas. This study examined the utility of PLR as a tool for predicting 30-day mortality in patients experiencing severe trauma. Methods: This study included 139 patients who experienced trauma and fulfilled ≥1 criteria for activation of the hospital’s severe trauma team. Patients were divided into non-survivor and survivor groups. Mean PLR values were compared between the groups, the optimal PLR cut-off value was determined, and mortality and survival analyses were performed. Statistical analyses were performed using SPSS ver. 26.0. The threshold of statistical significance was P<0.05. Results: There was a significant difference in mean (±standard deviation) PLR between the non-survivor (n=36) and survivor (n=103) groups (53.4±30.1 vs. 89.9±53.3, respectively; P<0.001). Receiver operating characteristic (ROC) curve analysis revealed an optimal PLR cut-off of 65.35 (sensitivity, 0.621; specificity, 0.694, respectively; area under the ROC curve, 0.742), and Kaplan-Meier survival analysis revealed a significant difference in mortality rate between the two groups. Conclusions: PLR can be calculated quickly and easily from a routine complete blood count, which is often performed in the emergency department for individuals who experience trauma. The PLR is useful for predicting 30-day mortality in trauma patients with severe trauma team activation.
Background Optic nerve sheath diameter (ONSD) is an emerging non-invasive, easily accessible, and possibly useful measurement for evaluating changes in intracranial pressure (ICP). The utilization of bedside ultrasonography (USG) to measure ONSD has garnered increased attention due to its portability, real-time capability, and lack of ionizing radiation. The primary aim of the study was to assess whether bedside USG-guided ONSD measurement can reliably predict increased ICP in traumatic brain injury (TBI) patients. Methods: A total of 95 patients admitted to the trauma intensive care unit was included in this cross sectional study. Patient brain computed tomography (CT) scans and Glasgow Coma Scale (GCS) scores were assessed at the time of admission. Bedside USG-guided binocular ONSD was measured and the mean ONSD was noted. Microsoft Excel was used for statistical analysis. Results: Patients with low GCS had higher mean ONSD values (6.4±1.0 mm). A highly significant association was found among the GCS, CT results, and ONSD measurements (P<0.001). Compared to CT scans, the bedside USG ONSD had 86.42% sensitivity and 64.29% specificity for detecting elevated ICP. The positive predictive value of ONSD to identify elevated ICP was 93.33%, and its negative predictive value was 45.00%. ONSD measurement accuracy was 83.16%. Conclusions: Increased ICP can be accurately predicted by bedside USG measurement of ONSD and can be a valuable adjunctive tool in the management of TBI patients.
Citations
Citations to this article as recorded by
Measurement of Optic Nerve Sheath Diameter by Bedside Ultrasound in Patients With Traumatic Brain Injury Presenting to Emergency Department: A Review Preethy Koshy, Charuta Gadkari Cureus.2024;[Epub] CrossRef