Skip Navigation
Skip to contents

ACC : Acute and Critical Care

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "dorsal skinfold chamber model"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Original Article
Basic science and research
Feasibility study of incident dark-field video microscope for measuring microcirculatory variables in the mouse dorsal skinfold chamber model
Christine Kang, Ah-Reum Cho, Hyeon Jeong Lee, Hyae Jin Kim, Eun-Jung Kim, Soeun Jeo, Jeong-Min Hong, Daehoan Moon
Acute Crit Care. 2021;36(1):29-36.   Published online February 26, 2021
DOI: https://doi.org/10.4266/acc.2020.00969
  • 6,823 View
  • 151 Download
  • 2 Web of Science
  • 1 Crossref
AbstractAbstract PDFSupplementary Material
Background
Despite the importance of microcirculation in organ function, monitoring microcirculation is not a routine practice. With developments in microscopic technology, incident dark field (IDF) microscopy (Cytocam) has allowed visualization of the microcirculation. Dorsal skinfold chamber (DSC) mouse model has been used to investigate microcirculation physiology. By employing Cytocam-IDF imaging with DSC model to assess microcirculatory alteration in lipopolysaccharide (LPS)-induced endotoxemia, we attempted to validate availability of Cytocam-IDF imaging of microcirculation.
Methods
DSC was implanted in eight BALB/c mice for each group; control and sepsis. Both groups were given 72 hours to recover from surgery. The sepsis group had an additional 24-hour period of recovery post-LPS injection (4 mg/kg). Subsequently, a video of the microcirculation was recorded using Cytocam. Data on microcirculatory variables were obtained. Electron microscopy was implemented using lanthanum fixation to detect endothelial glycocalyx degradation.
Results
The microcirculatory flow index was significantly lower (control, 2.8±0.3; sepsis, 2.1±0.8; P=0.033) and heterogeneity index was considerably higher (control, 0.10±0.15; sepsis, 0.53±0.48; P=0.044) in the sepsis group than in the control group. Electron microscopy revealed glycocalyx demolishment in the sepsis group.
Conclusions
Cytocam showed reliable ability for observing changes in the microcirculation under septic conditions in the DSC model. The convenience and good imaging quality and the automatic analysis software available for Cytocam-IDF imaging, along with the ability to perform real-time in vivo experiments in the DSC model, are expected to be helpful in future microcirculation investigations.

Citations

Citations to this article as recorded by  
  • Sedation with propofol and isoflurane differs in terms of microcirculatory parameters: A randomized animal study using dorsal skinfold chamber mouse model
    Christine Kang, Ah-Reum Cho, Haekyu Kim, Jae-Young Kwon, Hyeon Jeong Lee, Eunsoo Kim
    Microvascular Research.2024; 153: 104655.     CrossRef

ACC : Acute and Critical Care
TOP