- Pulmonary
-
Patient-Ventilator Dyssynchrony
-
Elvira-Markela Antonogiannaki, Dimitris Georgopoulos, Evangelia Akoumianaki
-
Korean J Crit Care Med. 2017;32(4):307-322. Published online November 30, 2017
-
DOI: https://doi.org/10.4266/kjccm.2017.00535
-
-
36,755
View
-
2,189
Download
-
15
Web of Science
-
16
Crossref
-
Abstract
PDF
- In mechanically ventilated patients, assisted mechanical ventilation (MV) is employed early, following the acute phase of critical illness, in order to eliminate the detrimental effects of controlled MV, most notably the development of ventilator-induced diaphragmatic dysfunction. Nevertheless, the benefits of assisted MV are often counteracted by the development of patient-ventilator dyssynchrony. Patient-ventilator dyssynchrony occurs when either the initiation and/or termination of mechanical breath is not in time agreement with the initiation and termination of neural inspiration, respectively, or if the magnitude of mechanical assist does not respond to the patient’s respiratory demand. As patient-ventilator dyssynchrony has been associated with several adverse effects and can adversely influence patient outcome, every effort should be made to recognize and correct this occurrence at bedside. To detect patient-ventilator dyssynchronies, the physician should assess patient comfort and carefully inspect the pressure- and flow-time waveforms, available on the ventilator screen of all modern ventilators. Modern ventilators offer several modifiable settings to improve patient-ventilator interaction. New proportional modes of ventilation are also very helpful in improving patient-ventilator interaction.
-
Citations
Citations to this article as recorded by 
- Optimizing Mechanical Ventilation: A Clinical and Practical Bedside Method for the Identification and Management of Patient–Ventilator Asynchronies in Critical Care
Vasco Costa, José Pedro Cidade, Inês Medeiros, Pedro Póvoa Journal of Clinical Medicine.2025; 14(1): 214. CrossRef - Esfuerzos respiratorios inefectivos y sus potenciales consecuencias durante la ventilación mecánica
Mauro Robertino Del Bono, Luis Felipe Damiani, Gustavo Adrián Plotnikow, Sebastián Consalvo, Emanuel Di Salvo, Gastón Murias Medicina Intensiva.2025; : 502133. CrossRef - Ineffective respiratory efforts and their potential consequences during mechanical ventilation
Mauro Robertino Del Bono, Luis Felipe Damiani, Gustavo Adrián Plotnikow, Sebastián Consalvo, Emanuel Di Salvo, Gastón Murias Medicina Intensiva (English Edition).2025; : 502133. CrossRef - Acute Respiratory Failure in Severe Acute Brain Injury
Zachary Robateau, Victor Lin, Sarah Wahlster Critical Care Clinics.2024; 40(2): 367. CrossRef - Quantifiable identification of flow-limited ventilator dyssynchrony with the deformed lung ventilator model
Deepak K. Agrawal, Bradford J. Smith, Peter D. Sottile, George Hripcsak, David J. Albers Computers in Biology and Medicine.2024; 173: 108349. CrossRef - Gastric Pressure Monitoring Unveils Abnormal Patient–Ventilator Interaction Related to Active Expiration: A Retrospective Observational Study
Evangelia Akoumianaki, Katerina Vaporidi, Vaia Stamatopoulou, Stella Soundoulounaki, Meropi Panagiotarakou, Eumorfia Kondili, Dimitris Georgopoulos Anesthesiology.2024; 141(3): 541. CrossRef - A novel application of spectrograms with machine learning can detect patient ventilator dyssynchrony
Ishmael Obeso, Benjamin Yoon, David Ledbetter, Melissa Aczon, Eugene Laksana, Alice Zhou, R. Andrew Eckberg, Keith Mertan, Robinder G. Khemani, Randall Wetzel Biomedical Signal Processing and Control.2023; 86: 105251. CrossRef - Effects of Neurally Adjusted Ventilation Assist (NAVA) and conventional modes of mechanical ventilation on diaphragm functions: A randomized controlled trial
Vijay Hadda, Sourabh Pahuja, Saurabh Mittal, Karan Madan, Maroof A Khan, Anant Mohan, Randeep Guleria Heart & Lung.2022; 53: 36. CrossRef - Reverse Triggering: An Introduction to Diagnosis, Management, and Pharmacologic Implications
Brian Murray, Andrea Sikora, Jason R. Mock, Thomas Devlin, Kelli Keats, Rebecca Powell, Thomas Bice Frontiers in Pharmacology.2022;[Epub] CrossRef - Attention-based convolutional long short-term memory neural network for detection of patient-ventilator asynchrony from mechanical ventilation
Dingfu Chen, Kangwei Lin, Ziheng Deng, Dayu Li, Qingxu Deng Biomedical Signal Processing and Control.2022; 78: 103923. CrossRef - Tracheotomy in ventilator-dependent patients with COVID-19: a cross-sectional study of analgesia and sedative requirements
Brianne Wiemann, Jessica Mitchell, Preeyaporn Sarangarm, Richard Miskimins Journal of International Medical Research.2022;[Epub] CrossRef - An interpretable 1D convolutional neural network for detecting patient-ventilator asynchrony in mechanical ventilation
Qing Pan, Lingwei Zhang, Mengzhe Jia, Jie Pan, Qiang Gong, Yunfei Lu, Zhongheng Zhang, Huiqing Ge, Luping Fang Computer Methods and Programs in Biomedicine.2021; 204: 106057. CrossRef - Accuracy of Algorithms and Visual Inspection for Detection of Trigger Asynchrony in Critical Patients : A Systematic Review
Monique Bandeira, Alícia Almeida, Lívia Melo, Pedro Henrique de Moura, Emanuelle Olympia Ribeiro Silva, Jakson Silva, Armèle Dornelas de Andrade, Daniella Brandão, Shirley Campos, Robert Boots Critical Care Research and Practice.2021; 2021: 1. CrossRef - Patient–Ventilator Dyssynchrony in Critically Ill Patients
Bruno De Oliveira, Nahla Aljaberi, Ahmed Taha, Baraa Abduljawad, Fadi Hamed, Nadeem Rahman, Jihad Mallat Journal of Clinical Medicine.2021; 10(19): 4550. CrossRef - The authors respond
Bruno V Pinheiro, Júlia R Silva, Maycon M Reboredo Respiratory Care.2021; 66(1): 180. CrossRef - Patient–ventilator asynchrony in acute brain-injured patients: a prospective observational study
Xu-Ying Luo, Xuan He, Yi-Min Zhou, Yu-Mei Wang, Jing-Ran Chen, Guang-Qiang Chen, Hong-Liang Li, Yan-Lin Yang, Linlin Zhang, Jian-Xin Zhou Annals of Intensive Care.2020;[Epub] CrossRef
|